

Biomarkers:

Intestinal Permeability & Metabolic Wellness

Dr Aron Gonshor: PhD, DDS, FRCD(C), FAO

February 10, 2021

Association of Functional Diagnostic Nutrition Professionals

INTESTINAL PERMEABILITY

Intestine

Largest surface of the body

- ~ 30-40 M long, > 300-400 sq. M area (2 tennis courts)
- ~150 trillion bacteria Microbiome
 - ~15 x the 10 trillion cells in human body
- Continuously exposed to environment
 - Bacterial/dietary antigens

FLUIDS

- Largest number of immune cells
 - 70% of all lymphoid tissues in body
- 40% of the body's energy expenditure

Intestinal Absorption

Intestinal Mucosa: Paradoxical role

Absorb nutrients

Exclude toxins and Macromolecules

- Mucosal breach may lead to:
 - Malabsorption
 - Increased exposure to toxins & antigens

Mucosal immunology (2003)

Zonulin FP: Physiologic Role

These peptides control opening of:

Paracellular Tight Junction Pathway

- Defensive mechanism: Flushes out microorganisms
- Body's response to bacterial colonization of the small intestine

Rapid, Reversible, Reproducible

Zonulin FP

"The only physiological modulators of intercellular tight junctions, described so far, that;

1. Helps control macromolecule movement

2. Modulate **tolerance/immune** response"

Fasano, Physiological Reviews (2011)

Paracellular Tight Junctions (TJ)

Once considered static. Now seen as Dynamic

Adapt to developmental, physiological, pathological, and dietary circumstances
Defense against some infectious agents
Absorption of nutrients: passive
Surveillance of gut bacterial content
Transport of leukocytes (WBCs) into the gut

LUIDS IO

IBD: Effect on Intestinal Permeability

FLUIDS IQ

AMP = Antimicrobial Peptides IBD = Inflammatory Bowel Disease

Diseases associated with Zonulin FP

Autoimmune Diseases

- Inflammatory Bowel Disease
 - Chron's Disease & Ulcerative Colitis
- Celiac Disease, Diabetes (type 1)
- Reumatoid arthritis, Lupus, Ankylosing spondylitis
- Nervous System
 - Multiple Sclerosis
 - Polyneuropathy (chronic inflam. demyelinating)
 - Schizophrenia, Autism (?)

Cancers

Chrom 16

FLUIDS IQ

- Brain (gliomas), Breast, Ovarian,
- Pancreatic, Lung adenocarcinoma

Conditions related to Intestinal Permeability

- Food Sensitivities/Allergies
 Acute pancreatitis
 Peptic Ulcers
- Cholelithiasis (gallstones)
- Diabetes (Type 1)
- Celiac disease
- Psoriasis, eczema, etc.
- Hashimoto's Thyroditis (thyroid destruction)

- Chronic fatigue syndrome
- IBD: Crohn's disease, UC
- SIBO
- Irritable Bowel Syndrome
- Nutritional depletion
- Chronic Alcoholism
- NSAID Therapy
- Migraines
- Protozoal Infections
 - single cell organisms

Intestinal Permeability & Autoimmune Disease

Celiac Disease

Inflammatory Bowel Disease (IBD)

• Crohn's Disease, Ulcerative Colitis

- Diabetes
- Multiple Sclerosis
- Other Diseases and Conditions

Causes of Increased Zonulin FP & development of "Hyperpermeability"

- Gliadin in the diet (component of gluten)
 - Perceived as a pathogenic organism

- Dysbiosis: Specifically Overgrowth
 - Bacterial (SIBO), especially harmful forms
 - Fungal (eg; Candida) and Yeast
 - Parasitic infections

Histamine

• **Histamine**: A Biogenic amine (2-(4-imidazolyl) ethylamine)

- Involved in the following:
 - Local immune responses
 - Regulating physiological functioning in the gut
 - Neurotransmitter

FLUIDS iQ

Histamine Intestinal Metabolism

Diamine Oxidase (DAO)

- A protein stored in cell plasma membrane vesicles. Secreted upon stimulation
- Scavenges extracellular histamine (e.g., after ingestion of histamine-rich food)

'Diamine Oxidase activity is unique among intestinal mucosal enzymes, in that circulating levels can serve as a marker of mucosal maturation and integrity'. Luk et al. 1980

Decreased DAO activity indicator of intestinal mucosal damage

FLUIDS IQ

Histamine effects & Plasma Concentration

Maintz & Novak, Am J Clin Nutr, '07

Histamine (ng/ml)	Clinical Effect			
0-1 *	None			
1-2 **	Increased Gastric Acid Secretion Increase in Heart Rate			
3-5	Tachycardia, headache, flushing, urticaria, pruritis			
6-8	Decrease in Arterial Pressure			
7-12	Bronchospasm			
~100	Cardiac Arrest			
FLUIDS IQ * = Dyer	r et al. J Allergy Clin Immunol, '82 * * = Whorl et al. Allerg	y and Asthma Proc, '04		

Small Intestine: Overview

Villus **Small Intestine** Commensal men bacteria Enterocyte Goblet Cell Follicle-associated Epithelial cell IEL Dendritic Mucus cell IgA M cell T cell Crypt 00' Follicle **Epithelial** Peyer's patch stem cell Paneth Antimicrobial B cell cell proteins Myofibroblast Enteroendocrine Plasma cell cell Mesenteric lymph node Macrophage Lamina Propria Lymphatics

IEL = Intestinal intraepithelial T lymphocytes

Candida albicans

- Yeast found in small amounts in body
 - Only fungal species that is part of 'normal' microflora
- Candidiasis: Fungal infection from genus Candida
 - Candida albicans found in over 80% of fungal isolates

How is Candida overgrowth determined?

Blood Test:

- Checks for IgG, IgA, and IgM antibodies. Often the preliminary test.
- Reflects an activated immune response to acute or chronic infections

Stool Test:

- Checks for the Candida antigen, as part of a comprehensive stool analysis.
- Often significant antigen levels, since Candida part of commensal gut population

Immunoglobulins (Ig^s)

IgM	lgG	lgA	lgE
 First lg type produced in an infection Activates Complement 	 Main Ig in serum, & immune response Memory response Passes through vascular system & placenta Activates complement 4 Subtypes: IgG1, 2, 3, 4 	 Primary function in mucosal tissue Immune component of GI system Early activation of a developing food or chemical sensitivity 	 Allergic reaction involvement Lowest concentration in serum

Yeast Overgrowth: Candidiasis

 Candida Suite: IgM, IgG, IgA Antibodies (Abs) Ab Screening Test for Proliferation of Candida and Candidiasis - IgM: Increase at the beginning of an infection - IgG: Develop later. Indicate past or prolonged infection - IgA: Present almost exclusively in mucous membranes When in blood, indicates ongoing infection

<u>NON REACTIVE</u>: No significant antibody level of *Candida* albicans detected.

JF

CANDIDA SUITE (IgM, IgG, IgA)

			Ref	Reference Range* (U/ml)		
Analyte	Result	Reaction	Non Reactive	Indeterminant	Reactive	
Candida IgM	10.26	Indeterminant	< 9	9 - 11	> 11	
Candida IgG	7.25	Non Reactive	< 9	9 - 11	> 11	
Candida IgA	14.25	Reactive	9	9 - 11	> 11	
*Reference range derived from a nor ution of results, encompasion and omly selected population						
REACTIVE: nd research andida albicans detected. e responsibility			INDETERMINANT: Presence of antibody remains uncertain or indefinite, due to cross			
ay indicate past, active or prolonged fection, depending on antibody level.			reactivity with ot that may have pa	ther Candida sp athological pote	ecies ential.	

Non Reactive: Values are considered Non Reactive when no significant level of the Candida albicans antibody has been detected.

Primary Screening

Blood Zonulin FP

Usefulness Rating ****

FLUIDS IO

2. Inflammation & Permeability Changes

- Histamine: Shows if there is inflammation
- Diamine Oxidase (DAO):
 - Is Histamine being broken down?
 - If DAO low:
 - Permeability changes?
 - If histamine high: Diet/Supplements

Complementary Assessment (Cont^d)

Usefulness Rating *****

3. <u>Activation of Immune Response</u>

- Immunoglobulin G (Total IgG) Food Sensitivity
 - Identifies Ab/antigen complexes causing inflammation
- Candida Albicans Suite (IgG, IgA, IgM)
 - Overgrowth a common manifestation of dysbiosis

Usefulness Rating *****

4. Stress & Permeability/Absorption

- Salivary Hormonal profiles

- E2, Pg, T, DHEA-S, Diurnal C, and C/DH ratio
- Adrenal fatigue and Stress index

METABOLIC NELLNESS

DIGESTION, LIVER DETOXIFICATION, OXIDATIVE STRESS

METABOLIC WELLNESS

DIGESTION, LIVER DETOXIFICATION, OXIDATIVE STRESS

Indican

Tool to monitor protein digestive efficiency.

- Normal Function:
 - Small quantities of Indole formed by bacterial metabolism of AA Tryptophan
 - Most excreted in feces. Some absorbed. Processed to indican in liver.
 - Excreted in urine. Trace amounts of indican found in urine samples

Gut Dysfunction: Dysbiosis

- Anaerobic intestinal bacterial decomposition of proteins (putrefaction)
- High amounts of 'Indole' by-product created
- Absorbed into blood stream. Processed to indican in liver
- Increased levels of urinary indican

FLUIDS IQ

FLUIDS IQ

Conditions with Elevated Urinary Indican Levels

- Inflammatory bowel disease
- Celiac disease
- Hypochlorhydria, Achlorhydria
- Gastric ulcer
- Biliary & intestinal obstruction
- Jejunal diverticulosis

If Urinary Indican Results are Elevated?

- Starting point for further investigation into gut health
- Possible Directions:
 - Optimizing levels of stomach acids
 - Replenishment of digestive enzymes
 - Probiotic supplementation or other gut support
 - Further testing:
 - SIBO

FLUIDS IQ

Comprehensive Digestive Stool Analysis (CDSA)

*U/mg C = U/mg Creatinine

METABOLIC WELLNESS

DIGESTION, LIVER RETOXIFICATION, OXIDATIVE STRESS

Liver Functions

Metabolism

- Synthesis: AAs, Proteins & Cholesterol
- Production of bile (from cholesterol)
- Breakdown alcohols & medications
- Regulation of hormones

Storage/Regulation

- Fats, proteins,
- Glycogen glucose
- Vitamins (absorption)
- Copper, iron

Over 500 functions & metabolic processes

Immunity

 Destroys bacterial pathogens from gut

Blood

- Deactivation of toxins
- Creation of clotting factors
- Decomposition old/damaged RBCs
- Regulation glucose/fats/AAs

Liver Detoxification: Pathways

Liska -1998

- Vits A, C, D3, E
- Vits B2, 3, 6, 12
- Folic Acid (B9)
- Glutathione/NAC
- Flavonoids

Endotoxins

Reactions

- Glucuronidation, Sulfation
- Glutathione conjugation
- Acetylation, Methylation
- Amino Acid conjugation

Bile Acids (BAs)

- 12 types: Primary types Cholic Acid & Chenodeoxycholic Acid
- BA levels in feces, blood, urine, & bile: markers for various diseases such as hyperlipidemia, cholestasis, gall stones, colon cancer, others.
- BAs also exist in a sulfate salt form bile acid sulfates
 - BA sulfation increases their solubility & decreases intestinal absorption, thereby enhancing fecal and urinary excretion.

Bile Acids

	Abbreviation	Bile Acid Name	Bile Acid Type
ĺ	CA	Cholic acid	Primary
[CDCA	Chenodeoxycholic acid	Primary
1	DCA	Deoxycholic acid	Secondary
[GCA	Glycocholic acid	Glyco-conjugated
[GCDCA	Glycochenodeoxycholic acid	Glyco-conjugated
[GDCA	Glycodeoxycholic acid	Glyco-conjugated
[GLCA	Glycolithocholic acid	Glyco-conjugated
[GLCAS	Glycolithocholic acid sulfate	Glyco-conjugated
[GUDCA	Glycoursodeoxycholic acid	Glyco-conjugated
[HDCA	Hyodeoxycholic acid	Secondary
[LCA	Lithocholic acid	Secondary
[MCA (a)	α-Muricholic acid	Primary (mouse)
[MCA (b)	Muricholic acid, beta	Primary (mouse)
[MCA (o)	Muricholic acid, omega	Primary (mouse)
[TCA	Taurocholic acid	Tauro-conjugated
[TCDCA	Taurochenodeoxycholic acid	Tauro-conjugated
[TDCA	Taurodeoxycholic acid	Tauro-conjugated
[TLCA	Taurolithocholic acid	Tauro-conjugated
ĺ	TLCAS	Taurolithocholic acid sulfate	Tauro-conjugated
	TMCA (a+b)	Tauromuricholic acid (alpha+beta)	Tauro-conjugated (mouse)
ĺ	TUDCA	Tauroursodeoxycholic acid	Tauro-conjugated
1	UDCA	Ursodeoxycholic acid	Secondary

Total Bile Acid (TBA) Colorimetric Assay

Bile Acids (BAs): 12 types

- Two primary BA types: cholic & chenodeoxycholic acids
- Dehydroxylated into two 2^{ndary} BAs
- These 4 are conjugated to taurine or glycine: 8 different conjugated BAs

TBA is a marker for screening & prognosis of:

- Hepatobiliary disease
- Liver parenchymal damage and cholestasis (reduced or blocked flow of bile)

Increase of TBA indicates the risk of:

- Viral hepatitis, cirrhosis, alcoholic liver disease,
- Drug-induced liver injury, cholestasis

FLUIDS IQ

Detection Principle Recycling Enzyme Immunoassay

S-NAD + Bile Acid (12) $\xrightarrow{3\alpha - HSD}$ 3-Ketosteroid + S-NADH

3-Ketosteroid + S-NADH ______ NAD+ + Bile Acid

Optical Density (OD) measured at 340 nm

Absorbance changes linearly proportional to BA concentration

Result: Quantitative measure of TBA concentration in urine

TELUIDS IQ Diaphorase: Catalyzes reactions of NAD cofactors $3\alpha - HSD$ (hydroxysteroid dehydrogenase)

METABOLIC WELLNESS

DIGESTION, LIVER DETOXIFICATION, OXIDATIVE STRESS

A Major Cause of Cell & DNA Damage **Oxidative Stress:**

What is it?

Free Radicals

 Any species that contains one or more unpaired electrons & participates in biochemical reactions

- Removing electrons: "Oxidation"
- Receiving electrons: "Reduction"
- Electron transfer: "Redox Reaction"

Oxidative Stress (OS)

Marciano et al - 2017

Free radicals produced in cells during normal metabolic processes.
 Antioxidants neutralize these free radicals

 Imbalance between Reactive Oxygen / Nitrogen Species (ROS / NOS), & system's ability to Detoxify the reactive intermediates or Repair the damage

Oxidative Stress - Cellular Damage - Markers

1. DNA Oxidation

St Georges-Chaumet - 2016

FLUIDS 10 PRR = Pattern Recognition Receptors FPR = Formylated Protein Receptors

NOX = NADPH Oxidase

- Reduction in maintenance of concentration gradient
 - Increased membrane permeability
 - Inflammation

FLUIDS

- Creation of other free radicals & DNA Oxidation damage

3. Protein Oxidation

- ROS oxidize proteins and inhibit the proteolytic system.
- Severely oxidized proteins are not degraded and accumulate in cells

OS, Age-Related Diseases & Relevant Biomarkers

FLUIDS IQ

Intestinal Barrier & protection against OS

OS causes increased carbonylation of cellular proteins, including the actin and microtubule cytoskeletons.

- Protein Carbonylation is irreversible oxidative damage = loss of protein function
- Indicator of severe oxidative damage & disease-derived protein dysfunction

Results: Loss of TJ integrity and increased paracellular permeability Farhadi. '06

FLUIDS IQ

Luminal content & gut microbiota **Permeable** Intestinal barrier (Tight Junctions) Bacteria / Toxins Layer of epithelial cells & underlying LPS nonepithelial tissue ROS/ Free radicals Thick secreted mucous layer Ethanol (200 µm) (Et-OH) **Unhealthy** Healthy

Frequently Used Biomarkers of Oxidative Stress

Marker or Type of Damage		0										
		Tissues	Blood	Urine	Other							
D												
8-hvdroxyguanosine (8-OHG)	X	X	X	X	Ce	rebrospinal fluid						
*8-hydroxydeoxyguanosine (8-OHdG)	Х	Х	Х	Х								
Abasic (AP) sites	×	×										
BPDE DNA Adduct	X	Х				Marker or Type of Damage		Sample Type				
Double-strand DNA breaks	X					market of Type of Damage	Cells	Tissues	Blood	Urine	Other	
Comet Assay (general DNA damage)	X					Prote	in Oxida	lation / Nitration				
UV DNA Damage (CPD, 6-4PP)	X				(*Protein Carbonyl Content (PCC)	Х	X	Х			
Lipid Peroxidation						- 3-Nitrotyrosine X X X						
A Hydroxynononol (A HNE)	V	×	×			Advanced Glycation End Products (AGE)	X	X	X			
4-Hydroxynonenar (4-HNE)					Advanced Oxidation Protein Products (AOPP)	X	X	X				
8-iso-Prostaglandin F2alpha (8-isoprostane)	X	X	X	X		BPDE Protein Adduct	X	X	X			
Malondialdehyde (MDA) X X X X		Reactive Oxygen Species										
TBARS	X	Х	X	Х		Universal ROS / RNS	X	X	X	X		
			1		_	Hydrogen Peroxide	X	X	X	X		
						Nitric Oxide	X	X	X	X		

Universal ROS / RNS	X	X	X	X	
Hydrogen Peroxide	X	Х	Х	Х	
Nitric Oxide	X	Х	Х	Х	
	Antiox	idants			
Catalase	X	Х	X		
Glutathione	X	Х	X	х	
Superoxide Dismutase	X	Х	X		
Oxygen Radical Antioxidant Capacity (ORAC)	X	X	X	х	Food samples
Hydroxyl Radical Antioxidant Capacity (HORAC)	X	Х	X	Х	Food samples
Total Antioxidant Capacity (TAC)	X	Х	X	Х	Food samples
Cell-Based Exogenous Antioxidant Assay					Food samples, Antioxidants

Oxidative Stress - Cellular Damage - Markers

Profiles of OS Biomarkers in Spot Urine samples

Diurnal & inter-individual variability in OS status in healthy individuals
 8-OHdG:

- Highest test/retest reliability (ICC = 0.96)
- Most reproducible measurements, with lowest variability (low CV)

Most suitable biomarker of OS Biomarkers in SPOT urine samples

The DNA Oxidative Damage Test

8-Hydroxy-2'-deoxyguanosine: 8-OHdG

Biomarker of cumulative cellular oxidative stress
Quantitatively assesses ongoing oxidative damage
Monitors effects of antioxidant therapies & detoxification
Simple collection: Dried urine

8-Hydroxy-2'-deoxyguanosine: 8-OHdG

Response to normal metabolic processes & environmental factors
 Produced by DNA oxidative damage due to reactive O₂ & N₂ species¹

- Increased 8-OHdG levels associated with many dysfunctions/diseases:
 Aging process, COPD², cancer, diabetes, hypertension³ and others
- DNA oxidative damage also affects cell Lipid & Protein function

Cellular 8-OHdG Concentration: Established Marker of Oxidative Stress

1. Lin H. et al. (2004) Biochem J. 380 2. Liu X. et al. (2019) Tubitak. 49 3. Kuo H. et al. (2007) Mutat Res. 631

OS & ROS-Induced Urinary 8-OHdG Elevation Association with Pathological Processes

- Inflammatory Bowel Disease
- Metabolic Syndrome
- Pancreatitis

FLUIDS IO

- Hyperglycemia
- Alzheimer's Disease
- Chronic Hepatitis
- Atopic Dermatitis

- Parkinson's Disease
- Alzheimer's Disease
- Rheumatoid Arthritis
- Huntington's Disease
- Diabetic Nephropathy
- Diabetic Retinopathy
- Cystic Fibrosis
Elevated Urinary 8-OHdG Exposure to Environmental Factors

- Cigarette smoke
- Diesel exhaust
- Asbestos

FLUIDS IQ

- Toxic metals
- Radon (indoors)

Fumes

- Chromium, Manganese, Vanadium
- Styrene
- Touene
- Zylene
- Benzene

Interaction of Nutrition, Antioxidants, OS & Health Status

Biomarkers:

Intestinal Permeability & Metabolic Wellness

Dr Aron Gonshor: PhD, DDS, FRCD(C), FAO

February 10, 2021

Association of Functional Diagnostic Nutrition Professionals

